THE UNIX COMMAND LANGUAGE

K Thompson

Computing Science Research Dept
Bell Laboratories

(:) K Thompscn 1976

375

K THOMPSON has a BS and an MS in Electrical Engineering from the
Untversity of California, Berkeley (1965 and 1966 respectively).

He has been a member of the Technical Staff in the Computing Science
Research Department of Bell Laboratories from 1966 to the present.
His work has centred on languages, gamee, and systems. His early
work hae been on MULTICS, file system design and simulation, computer
chese, cubic (3D) tie-tac-toe, and language implementation. His
recent work has revolved around the UNIX time-sharing system and its
subsystems software.

376

Thompson

THE UNIX COMMAND LANGUAGE

INTRODUCTION

A program is generally exponentially complicated by the number of notions that it in-
vents for itself. To reduce this complication to a minimum, you have to make the num-
ber of notions zero or one, which are two numbers that can be raised to any power with-
out disturbing this concept. Since you cannot achieve much with zero notions, it is

my belief that you should base systems on a single notion.

This paper describes the command language and some utilities on the UNIX time-sharing
system (137), which runs on DEC PDP-11/45 computers. Examples are given that show how
the single notion of I/0 streaming and interconnection of utility programs are used to
build complex programs from simple utilities.

Virtually every construction profession (building, hardware, etec) except that of soft-
ware production relies on pre-fabricated building bloecks. We have long since passed
the stage when total rebuilding was feasible, yet this is still the way in which many
systems are developed.

This paper, as well as describing the syntax and semantics of the UNIX command language,
attempts to show a method of decomposition of programs and reconstruction using basic
building blocks. This method is not perfect, or even right, but has to be a step in
generating programs of the next level of complexity.

THE SHELL

Most users of UNIX, when they log on, find themselves talking to a program called the
Shell. The Shell's job is to execute programs specified by the user. The simplest
of the requests has the form:

command arg, arg, ... arg,

This instructs the Shell to execute the named command and make the specified arguments
available to that command as character strings. Since users may write their own comm-
ands and give them arbitrary names, the command name is first assumed to be a user-
supplied name. In this way, the existence of an obscure system command does not res-
trict the user's vocabulary.

Every command executed has two files pre-opened for it. One can be read from (the

standard input) and the other can be written to (the standard output). Normally, a
program's standard input is the user's console keyboard, and the standard output is

377

Fhompeon

the console printer. Thus, most commands use the standard I/0 files for interactive
communication with the user,

The Shell has the ability to redirect a command's standard 1/0 files without the comm-
and's knowledge. TFor example, the syntax:

sh <yilenane
instructs the Shell to run the sh command with the standard input switched to the file.
This happens to be the name of the Shell itself. Thus this invokes a second Shell to
read and execute the commands specified in the file.
The obvious extension of this syntax:

1s >output
instructs the Shell to run the 1s command with standard output redirected to a file
called output. This file will be created by the Shell if it does not already exist.
If it exists, it will be truncated. The 1s (abbreviation of list) command writes an
alphabetical list of the names of all of the files in the current working directory.
It is totally unaware of the redirection of the standard output that has occurred.
Another instance of output redirection

date >>output
instructs the Shell to put the standard output from the date command on the end of the
output file. This is done by not truncating the output file if it is found to exist.
If it does not exist, it is still created. In this case, the current date is appended

to the file containing the directory list.

In UNIX, all I/0 devices have names identical in syntax to regular files. This gives
added power to the Shell's redirection abilities. For example,

sh <crd >1pr

starts a Shell reading from the card reader and writing to the line printer. This can
naively be called 'batch processing’'.

Commands, together with their I/0 redirections, may appear on a single line if they are
separated by a semi-colon (;) or an ampersand (&). If a command is followed by a semi-
colon, its execution must complete before the rest of the line is interpreted. The
previous examples of 1s and date could have been executed by:

1s >output; date >>output
With an ampersand instead of a semi-colon, there is a difference. The command preced-
ing the ampersand is set in asynchronous execution. As in a previous example, the
command

sh <crd >Tpré

will start a 'batch' job stream without tying up a console.

378

Thompson

The most exotic feature of the Shell is its ability to connect the standard output of
one command directly to the standard input of another, Again, neither program is aware
that such things are going on. In the example

1s | pr
the command 1s will produce a directory listing. The command pr will paginate this list-
ing with dated headings. The pr command, of course, is just reading its standard in-
put and is unaware that it is paginating anything but a stream of characters. This can

be done less elegantly by the commands

1s >junk
pr <junk

followed by removal of the temporary file. Extending this idea, the command

1s | pr | 1ps
will cause a paginated directory listing to be delivered to the line printer spooler.
The 1ps spooler copies its standard input to files that will eventually be copied to

the line printer.

A final example of the Shell's syntax is its use of parentheses. Anything in matched
parentheses is executed as a single command by a new instance of the Shell.

Thus,
(1s; date) >output

will spawn another Shell to execute the commands inside the parentheses. This is ident-
ical to a previous example using >>. Another example is

(sTeep 3600; echo DONE)&

In this case, the sleep command will suspend execution for the number of seconds given
in its argument. The echo command will write its literal argument onto the standard
output. The combined effect is that after an hour the word DONE will be printed on the
console. Of course, in the meantime, the console is free to execute other commands.

The Shell, and the commands it executes, form an expression language, the elements of

which are quite grandiose operations. Since these operations can be user-supplied, it
is easily extensible.

THE SHELL AS A COMMAND

The Shell is just another command and by redirecting its standard input, it is possible
to execute commands from files. This section describes utility programs that are mainly
used inside such command files.

First, and trivially,

argument 5

379

Thompson

does absolutely nothing. The command : is the much talked about 'null! program; it
ignores its arguments and simply exits. One of its uses is to annotate Shell sequences,

The command
goto argument

'rewinds' its standard input. It then reads the standard input looking for the syntax
of a : command with an argument mateching its own. It leaves the standard input posit-
ioned after the : command. When control is returned to the Shell, execution continues
where the standard input was positioned. (This implies certain things about file pos-
itioning and open file sharing that will not be discussed here.)

For example, if the text
loop

command

sleep 120

goto loop
is placed in a file, then the command

sh <file
will execute whatever is specified by command about every two minutes.
The next example is

if expression command

The if command evaluates an expression consisting of one or more of its arguments.
If the expression is true, it executes the rest of its arguments as a command. The
expression may concern such things as the existence of files, comparisons of strings,
and the successful execution of commands.

The Shell, as a command, may be passed arguments. If it is, these arguments may be
substituted inte the standard input like macro arguments. The Shell also allows for
its whole list of arguments to be shifted. This makes it possible to repeat the same
set of commands for each argument of the list.

The Shell also has the ability to construct argument lists from pattern matches on all
the file names in a directory. In this way, it is possible, for example, to remove all
files ending in 'x' or to print all files having three-character names, and similar

operations.

A1l this gives the Shell and the commands that it executes the appearance of a programm-
ing language.

EXAMPLES

This section consists of further examples of Shell facilities followed by explanations
of the commands used.

380

Thompson

Spoken output
Consider the example
date | snobol spdate | speak
The date command produces output of the form:
Wed Jan 8 21:36:39 EST 1975
The second command runs the SNOBOL program spdate, which produces the following output:
today is wednesday january eighth.
at the tone the time will be
nine thirty six p m.
beeeeeceeeep.
The last part of the example is the program speak (138), which is a remarkable program
that heuristically converts arbitrary English words into phoneme output for a commer-

cially available voice synthesizer. So this example causes the computer to pronounce
the time of day over a loudspeaker in the computer room.

Desk calculator operations

A more practical use of the speak program is
dc | numb | speak
dc is an arbitrary precision desk ecalculator., Since its output consists completely of
numbers, the numb program converts digits into spoken numbers. The use of speak here
is obvious; the effect is a desk calculator for the blind.
The input
2 32 "
(reverse Polish meaning 2 to the 32nd power) causes dc¢ to send
4294967296
to numb, which sends
four billion,
two hundred ninety four million,
nine hundred sixty seven thousand,

two hundred ninety six.

to speak, whiech pronounces it.

Encryption

In the example

381

Thempsen

crypt password <in | program | crypt password >out

an arbitrary program is flanked by an encryption/decryption program. The program re-
ceives clear input from the decryption of the input file. The program's clear output
is then encrypted. This scheme allows the program to manipulate clear text maintained
in encrypted form without the risk of first generating a clear file.

Selective directory listings

A selective listing of a user's files could be obtained by
(Is; tp t) | sort | uniq u

The 1s program produces a list of the files in the current directory. The program tp
maintains users' personal archive tapes. With the t option, tp produces a list of the
files contained on a tape. The parentheses and semicolon concatenate the outputs of
the two lists, which are sorted and delivered to unig, which compares adjacent lines
of text for equality. Cenceptually, uniq splits a single copy of all duplicated lines
onto a d stream and all other lines (unique lines) onto a u stream. The u option sel-
ects the u stream to be output. Thus the example will print all files that are found
only on tape or only in the current directory. All file names found both on tape and
in the directory are suppressed. The variants

((Is; tp t) | sort | unig u): tp t) | sort | unig d
((Is5 tp t) | sort | unig u); 1s) | sort | uniq d

will further select the output. The first example will print file names that are on

tape but not in the directory. The second will print those in the directory but not on
tape.

Text formatting

Mathematical typesetting can be performed by
eqn <text | troff

The troff program accepts text and formatting directives for the purpose of photo-type-
setting a document, and egn (139) is a language pre-processor that translates equation
descriptions into formatting instructions. Some examples of inpuft and output are shown
in Figure 1.

Equation description Qutput

‘T’Z yz
{x sup 2} over {a sup 2} + {y sup 2} over {b sup 2} =1 = + 05 = 1
e sup {x sup {2 alpha} + y sup {2 beta)} exza + y2B
Figure 1: Mathematical typesetting

There are many more examples of language pre-processors. The desk calculator described
above has an algebraic language front end. The FORTRAN compiler has a facade

382

Thompson

implementing modern control structure (140).

Curve plotting

The sequence

calc | plot
is a simple example of a calculation that produces as output a set of paired numbers.
The plot program accepts numbers, and produces a scaled labelled plot. If calc did not
produce the numbers in monotonic order, the variant

calc | sort | plot
would fix that. Also if smoothing is necessary, the further amendment

calc | sort | spline | plot

includes a spline curve fitting algorithm.

Inter-user messages

Finally, the sequence
cc prog | mail cperson

shows the unexpected and extemporaneous way two programs were used. In this example
cc is the compiler for the C language, which is the axis around which all of UNIX res-
olves. UNIX itself is written in C, as are the Shell, C, and about T0% of the system
commands.

The mail command is used to send messages to a user's 'mailbox' file. The user is
informed of the existence of this 'mailbox' when he first logs on.

What happened was that the person who maintains C accidentally installed a bad compiler
late at night. When the morning erowd arrived, virtually all work was at a standstill.
This example shows how one user sent twelve pages of undeserved C diagnostics to the
culprit by way of a subtle complaint about the bug.

RETROSPECT

It is probably obvicus that many of the examples of large computing tasks have the form:
source | filter | sink

Here the source program has something to say; 1s and date are UNIX source programs.

(Often the source is replaced by a file, which states it contents.) This is often pro-

cessed by zero or more filter programs from where it is delivered to a sink. The sink

is usually defaulted to the console, but can be an output file or a program resembling
a pseudo-device., Sort and uniq are filters and speak and plot are pseudo-device sinks.

383

Thompson

When new UNIX software is required, the prospective program can usually be recognized
as beleonging to one of these categories. As a result of this classification and a
realization of a program's relationships to existing programs, much more general soft-
ware is produced. Programs do not contain large number of features. These features
are split out into separate filter programs. For example, our language processors do
not produce listings or cross references; these are unrelated tasks.

The whole notion encourages a cleaner understanding of the anatomy of data processing.
Programs are smaller, cleaner, easier to document, and easier to maintain.

SERMONETTE

Many familiar computing 'concepts' are missing from UNIX. TFiles have no records. There
are no access methods. User programs contain no system buffers. There are no file
types. These concepts fill a much-needed gap. I sincerely hope that when future syst-
ems are designed by manufacturers the value of some of these ingrained notions is re-

examined. Like the politician and his 'common man', manufacturers have their 'average
user'.

384

