
Devil Mode

Susam Pal

05 Oct 2023

Devil mode trades your comma key in exchange for a modifier-free editing
experience in Emacs. Yes, the comma key! The key you would normally
wield for punctuation in nearly every corner of text. Yes, this is twisted!
It would not be called the Devil otherwise, would it? If it were any more
rational, we might call it something divine, like, uh, the God mode? But
alas, there is nothing divine to be found here. Welcome, instead, to the
realm of the Devil! You will be granted the occasional use of the comma
key for punctuation, but only if you can charm the Devil. But beware, for
in this sinister domain, you must relinquish your comma key and embrace
an editing experience that whispers wicked secrets into your fingertips!

1 Introduction

Devil mode intercepts our keystrokes and translates them to Emacs key
sequences according to a configurable set of translation rules. For example,
with the default translation rules, when we type , x , f, Devil translates
it to C-x C-f.

The choice of the comma key (,) to mean the control modifier key (C-) may
seem outrageous. After all, the comma is a very important punctuation
both in prose as well as in code. Can we really get away with using , to
mean the C- modifier? It turns out, this terrible idea can be made to work
without too much of a hassle. At least it works for me. It might work for
you too. If it does not, Devil can be configured to use another key instead of
, to mean the C- modifier. See the section 11.4 and the subsequent sections
for a few examples.

A sceptical reader may rightfully ask: If , is translated to C-, how on earth
are we going to insert a literal , into the text when we need to? The section
5 answers this. But before we get there, we have some fundamentals to
cover. Take the plunge and see what unfolds. Maybe you will like this.
Maybe you will not. If you do not like this, you can always retreat to God
mode, Evil mode, the vanilla key bindings, or whatever piques your fancy.

1

2 Notation

A quick note about the notation used in the document: The previous exam-
ple shows that , x , f is translated to C-x C-f. What this really means is
that the keystrokes ,x,f is translated to ctrl+x ctrl+f. We do not really
type any space after the commas. The key , is directly followed by the key x.
However, the key sequence notation used in this document contains spaces
between each keystroke. This is consistent with how key sequences are repre-
sented in Emacs in general and how Emacs functions like key-description,
describe-key, etc. represent key sequences. When we really need to type
a space, it is represented as SPC.

3 Install

Devil is available via NonGNU ELPA and MELPA. You may already have
a preferred way of installing packages from ELPA/MELPA. If so, install the
package named devil to get Devil. If you have Emacs 28.1 or a more recent
version, it has NonGNU ELPA enabled by default, so you can install Devil
quite easily with M-x package-install RET devil RET without having to
perform any further steps. However, for the sake of completeness, a few
very different and basic ways of installing Devil are presented in the next
few subsections.

3.1 Install Interactively from MELPA

To install the latest version of Devil from MELPA, perform the following
steps:

1. Add the following to the Emacs initialization file (i.e., ~/.emacs or
~/.emacs.d/init.el or ~/.config/emacs/init.el):

(require 'package)

(add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/") t)

(package-initialize)

2. Start Emacs with the updated initialization file. Then type these
commands:

M-x package-refresh-contents RET

M-x package-install RET devil RET

3. Confirm that Devil is installed successfully with this command:

C-h f devil RET

4. Enable Devil mode with this command:

M-x global-devil-mode RET

2

https://elpa.nongnu.org/nongnu/devil.html
https://melpa.org/#/devil

5. Type , x , f and watch Devil translate it to C-x C-f and invoke the
corresponding command.

3.2 Install Automatically from MELPA

Here is yet another basic way to install and enable Devil using Elisp:

(require 'package)

(add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/") t)

(package-initialize)

(unless package-archive-contents

(package-refresh-contents))

(unless (package-installed-p 'devil)

(package-install 'devil))

(global-devil-mode)

(global-set-key (kbd "C-,") 'global-devil-mode)

Now type , x , f and watch Devil translate it to C-x C-f and invoke the
corresponding command. Type C-, to disable Devil mode. Type C-, again
to enable it.

3.3 Install from Git Source

If you prefer obtaining Devil from its Git repository, follow these steps:

1. Clone Devil to your system:

git clone https://github.com/susam/devil.git

2. Add the following to your Emacs initialization:

(add-to-list 'load-path "/path/to/devil/")

(require 'devil)

(global-devil-mode)

(global-set-key (kbd "C-,") 'global-devil-mode)

3. Start the Emacs editor. Devil mode should now be enabled in all
buffers. The modeline of each buffer should show the Devil lighter.

4. Type , x , f and watch Devil translate it to C-x C-f and invoke the
corresponding command. Type C-, to disable Devil mode. Type C-,

again to enable it.

4 Use Devil

Assuming vanilla Emacs key bindings have not been changed and Devil has
not been customised, here are some examples that demonstrate how Devil
may be used:

3

1. Type , x , f and watch Devil translate it to C-x C-f and invoke the
find-file command.

2. Type , p to move up one line.

3. To move up multiple lines, type , p p p and so on. Some Devil key
sequences are repeatable keys by default. The repeatable Devil key
sequences can be repeated by typing the last key of the Devil key
sequence over and over again.

4. Each repeatable key sequence belongs to a repeatable key sequence
groups. Like before, type , p p p to move the cursor up by a few
lines. But then immediately type n n to move the cursor down by a
couple of lines. Then immediately type p n b f to move the cursor
up, down, left, and right. The key sequences , p and , n and , f and
, b form a single repeatable key sequence group. Therefore after we
type any one of them, we can repeat that key sequence or any other
key sequence in the same group over and over again merely by typing
the last character of that key sequence. Typing any other key stops the
repetition and the default behaviour of that other key is then observed.
Type C-h v devil-repeatable-keys RET to see the complete list of
all repeatable key sequence groups.

5. Sometimes a repeatable key sequence may be the only key sequence in
a repeatable key sequence group. An example of such a key sequence is
, m ^ which translates to M-^ and joins the current line to the previous
line. In a text buffer with multiple lines type , m ^ to join the current
line to the previous line. Then type ^ repeatedly to continue joining
lines. Typing any other key stops the repetition.

6. Type , s and watch Devil translate it to C-s and invoke incremental
search.

7. Type , m x and watch Devil translate it to M-x and invoke the corre-
sponding command. Yes, , m is translated to M-.

8. Type , m m s and watch Devil translate it to C-M-s and invoke regular-
expression-based incremental search. The key sequence , m m is trans-
lated to C-M-.

9. Type , u , f and watch Devil translate it to C-u C-f and move the
cursor forward by 4 characters.

10. Type , u u , f and the cursor moves forward by 16 characters. Devil
uses its translation rules and an additional keymap to make this input
key sequence behave like C-u C-u C-f which moves the cursor forward
by 16 characters.

4

11. Type , SPC to type a comma followed by space. This is a special key
sequence to make it convenient to type a comma in the text. Note
that this sacrifices the use of , SPC to mean C-SPC which could have
been a convenient way to set a mark. See the section 11.3 if you do
not want to make this sacrifice.

12. Type , z SPC and watch Devil translate it to C-SPC and set a mark.
Yes, , z is translated to C- too.

13. Similarly, type , RET to type a comma followed by the enter key.
This is another special key.

14. Type , , to type a single comma. This special key is useful for cases
when you really need to type a single literal comma.

15. Type , h , k to invoke devil-describe-key. This is a special key
that invokes the Devil variant of describe-key included in vanilla
Emacs. When the key input prompt appears, type the Devil key se-
quence , x , f and Devil will display the documentation of the func-
tion invoked by this Devil key sequence. Note: The key sequence , h

k translates to C-h k and invokes the vanilla describe-key. It is the
Devil key sequence , h , k that invokes devil-describe-key.

5 Typing Commas

Devil makes the questionable choice of using the comma as its activation
key. As illustrated in the previous section, typing , x , f produces the
same effect as typing C-x C-f. One might naturally wonder how then we
are supposed to type literal commas.

Most often when we edit text, we do not really type a comma in isolation.
Often we immediately follow the comma with a space or a newline. This
assumption usually holds good while editing regular text. However, this
assumption may not hold in some situations, like while working with code
when we need to add a single comma at the end of an existing line.

In scenarios where the above assumption holds good, typing , SPC inserts a
comma and a space. Similarly, typing , RET inserts a comma and a newline.

In scenarios where we do need to type a single comma, type , , instead.

Note that you could also type a single comma with , q , which translates
to C-q , and inserts a literal comma. The Emacs key sequence C-q invokes
the command quoted-insert which inserts the next input character. The
, , special key sequence is probably easier to type than this.

Also, it is worth mentioning here that if all this fiddling with the comma
key feels clumsy, we could always customise the Devil key to something else

5

that feels better. We could also disable Devil mode temporarily and enable
it again later with C-, as explained in section 3.

6 Devil Reader

The following points briefly describe how Devil reads Devil key sequences,
translates them to Emacs key sequences, and runs commands bound to the
key sequences:

1. As soon as the Devil key is typed (which is , by default), Devil wakes
up and starts reading Devil key sequences. Type C-h v devil-key

RET to see the current Devil key.

2. After each keystroke is read, Devil checks if the key sequence accumu-
lated is a special key. If it is, then the special command bound to the
special key is executed immediately. Note that this step is performed
before any translation rules are applied to the input key sequence.
This is how the Devil special key sequence , SPC inserts a comma
and a space. Type C-h v devil-special-keys RET to see the list of
special keys and the commands bound to them.

3. If the key sequence accumulated so far is not a special key, then Devil
translates the Devil key sequence to a regular Emacs key sequence.
If the regular Emacs key sequence turns out to be a complete key
sequence and some command is found to be bound to it, then that
command is executed immediately. This is how the Devil key sequence
, x , f is translated to C-x C-f and the corresponding binding is
executed. If the translated key sequence is a complete key sequence
but no command is bound to it, then Devil displays a message that the
key sequence is undefined. Type C-h v devil-translations RET to
see the list of translation rules.

4. After successfully translating a Devil key sequence to an Emacs key
sequence and executing the command bound to it, Devil checks if
the key sequence is a repeatable key sequence. If it is found to be a
repeatable key sequence, then Devil sets a transient map so that the
repeatable key sequences that belong to the same group as the typed
Devil key sequence can be invoked merely by typing the last character
of the input key sequence. This is how , p p p f f moves the cursor
up by three lines and then by two characters forward. Type C-h v

devil-repeatable-keys RET to see the list of repeatable Devil key
sequences.

The variables devil-special-keys, devil-translations, and devil-repeatable-keys
may contain keys or values with the string %k in them. This is a placeholder
for devil-key. While applying the special keys, translation rules, or repeat

6

rules, each %k is replaced with the actual value of devil-key before applying
the rules.

7 Translation Mechanism

The following points provide an account of the translation mechanism that
Devil uses in order to convert a Devil key sequence entered by the user to
an Emacs key sequence:

1. The input key vector read from the user is converted to a key de-
scription (like the string produced by functions like describe-key and
key-description). For example, if the user types ,x,f it is converted
to , x , f.

2. Now the resulting key description is translated with simple string re-
placements. If any part of the string matches a key in devil-translations,
then it is replaced with the corresponding value. For example, , x ,

f is translated to C- x C- f. Then Devil normalises the result to C-x

C-f by removing the stray spaces after the modifier keys.

3. If the simple string based replacement discussed in the previous point
leads to an invalid Emacs key sequence, it skips the replacement that
causes the resulting Emacs key sequence to become invalid. For ex-
ample , m m , results in C-M-C- after the simple string replacement
because the default translation rules replace the leading , m m with
C-M- and the trailing , with C-. However, C-M-C- is an invalid key
sequence, so the replacement of the trailing , to C- is skipped. There-
fore, the input , m m , is translated to C-M-, instead.

4. Finally, Devil looks for key chords in the key sequence that contain
both the C- modifier and an uppercase letter. If such a key chord
occurs, then it replaces the uppercase letter with its shifted form, e.g.,
, m m V first translates to C-M-V according to the previous points and
then the result is translated to C-M-S-v according to this point.

8 Default Translation Rules

By default, Devil supports a small but peculiar set of translation rules that
can be used to avoid modifier keys while typing various types of key se-
quences. See C-h v devil-translations RET for the translation rules.
Here are some examples that demonstrate the default translation rules. The
obvious ones are shown first. The more peculiar translations come later in
the table. The concluding paragraph of this subsection offers a guide on how
to gradually and gently adopt these key sequences into your daily routine.

7

Input Translated Remarks

, s C-s Rule 1: , is replaced with C-

, m x M-x Rule 2: , m is replaced with M-

, [x C-[x equivalent to M-x

, m m s C-M-s Rule 3: , m m is replaced with C-M-

, m , M-, Rule 4: , m , is replaced with M-,

, m z m M-m Rule 5: , m z is replaced with M- too
, c , , C-c , Rule 6: , , is replaced with ,

, z SPC C-SPC Rule 7: , z is replaced with C- too
, z z C-z ditto
, z , C-, ditto

Note how we cannot use , SPC to set a mark because that key sequence
is already reserved as a special key sequence in devil-special-keys. In
order to conveniently set a mark, Devil translates , z to C- too, so that we
can type , z SPC and have Devil translate it to C-SPC.

Also, note that while , m may be used to type M- we have , [as yet another
way to type a key sequence that contains M- because , [translates to C-[

and C-[<key> is equivalent to ESC <key> which in turn is equivalent to
M-<key>.

The default translation examples presented in the table above look weirder
and weirder as we go down the table. But they are not as arbitrary as they
might initially appear to be. They are arranged in such a way that overall,
we get the following effect:

� Devil translates the input , to C-. Similarly it translates , m to M-

and , m m to C-M-.

� When we really want to type the Devil key , we need to double type
it in the Devil key sequence. Doubling the special character serves as
an escape mechanism to avoid the special meaning of the Devil key
and get its literal form instead.

� Now since , , translates to , we need another escape mechanism to
type C-,. Typing z in between serves as this escape mechanism, i.e.,
within a Devil key sequence , z , translates to C-,.

� Similarly since , m m translates to C-M- we need an escape mecha-
nism to type M-m. Again, typing z in between serves as this escape
mechanism, i.e., , m z m translates to M-m.

Here is a gentle guide to adopting these key sequences: For beginners using
Devil, it is not necessary to memorise all of them right away. Understanding
that , translates to C- and , m translates to M- is sufficient to begin. Sub-
sequently, learning that , m m translates to C-M- unlocks several more key
sequences like , m m s (C-M-s), , m m f (C-M-f), etc. As you encounter

8

more key sequences that are not covered by these initial rules, revisit the
above table to pick up new translation rules and adopt them in your day-
to-day usage of Devil.

9 Describe Devil Key

Devil offers a command named devil-describe-key that can be used to
describe a Devil key sequence. It works similarly to the describe-key com-
mand of vanilla Emacs that can be invoked with C-h k. The devil-describe-key
command can be invoked with the special key sequence , h , k. Type ,

h , k and a prompt appears to read a key sequence. Type any Devil key
sequence, say, , x , f and Devil immediately shows the documentation for
the function invoked by this key sequence.

Note that , x , f (devil-describe-key) can also be used to look up doc-
umentation for vanilla Emacs key sequences like C-x C-f.

Also note that the Devil key sequence is , h k is still free to invoke C-h k

(describe-key of vanilla Emacs).

10 Bonus Key Bindings

Devil adds the following additional key bindings only when Devil is enabled
globally with global-devil-mode:

� Adds the Devil key to isearch-mode-map, so that Devil key sequences
work in incremental search too.

� Adds u to universal-argument-more to allow repeating the universal
argument command C-u simply by repeating u.

As mentioned before these features are available only when Devil is en-
abled globally with global-devil-mode. If Devil is enabled locally with
devil-mode, then these features are not available.

11 Custom Configuration Examples

In the examples presented below, the (require ’devil) calls may be omit-
ted if Devil has been installed from a package archive like ELPA or MELPA.
There are appropriate autoloads in place in the Devil package that would
ensure that it is loaded automatically on enabling Devil mode. However,
the require calls have been included in the examples below for the sake of
completeness.

9

11.1 Local Mode

While the section 3 shows how we enable Devil mode globally, this section
shows how we can enable it locally. Here is an example initialization code
that enables Devil locally only in text buffers.

(require 'devil)

(add-hook 'text-mode-hook 'devil-mode)

(global-set-key (kbd "C-,") 'devil-mode)

This is not recommended though because this does not provide a seamless
Devil experience. For example, with Devil enabled locally in a text buffer
like this, although we can type , x , f to launch the find-file minibuffer,
we cannot use Devil key sequences in the minibuffer. Further the special
keymaps described in the previous section work only when Devil is enabled
globally.

11.2 Custom Appearance

The following initialization code shows how we can customise Devil to show
a Devil smiley in the modeline and in the Devil prompt.

(require 'devil)

(setq devil-lighter " \U0001F608")

(setq devil-prompt "\U0001F608 %t")

(global-devil-mode)

(global-set-key (kbd "C-,") 'global-devil-mode)

11.3 Reclaim , SPC to Set Mark

The default configuration for special keys reserves , SPC to insert a literal
comma followed by space. This default makes it easy to type comma in
various contexts. However, this means that , SPC does not translate to
C-SPC. Therefore , SPC cannot be used to set mark. Instead, the default
translation rules offer , z SPC as a way to set mark.

If you would rather set mark using , SPC and you are happy with typing
the special key , , to insert a literal comma, then use the following config-
uration:

(require 'devil)

(global-devil-mode)

(global-set-key (kbd "C-,") 'global-devil-mode)

(assoc-delete-all "%k SPC" devil-special-keys)

This removes the special key , SPC from devil-special-keys so that it is
now free to be translated to C-SPC and invoke set-mark-command.

10

11.4 Custom Devil Key

The following initialization code shows how we can customise Devil to use
a different Devil key.

(require 'devil)

(global-devil-mode)

(global-set-key (kbd "C-;") 'global-devil-mode)

(devil-set-key (kbd ";"))

The above example sets the Devil key to the semicolon, perhaps another
dubious choice for the Devil key. With this configuration, we can use ; x ;

f and have Devil translate it to C-x C-f.

11.5 Yet Another Custom Devil Key

The following initialization code shows how we can customise Devil to use
yet another different Devil key.

(require 'devil)

(global-devil-mode)

(global-set-key (kbd "C-<left>") 'global-devil-mode)

(devil-set-key (kbd "<left>"))

(dolist (key '("%k SPC" "%k RET" "%k <return>"))

(assoc-delete-all key devil-special-keys))

The above example sets the Devil key to the left arrow key. With this
configuration, we can use <left> x <left> f and have Devil translate it
to C-x C-f. We can type the special key <left> <left> to produce the
same effect as the original <left>.

The above example removes some special keys that are no longer useful. In
particular, <left> SPC is no longer reserved as a special key, so we can use
it now to set a mark.

11.6 Multiple Devil Keys

While this package provides the comma (,) as the default and the only Devil
key, nothing stops you from extending the mode map to support multiple
Devil keys. Say, you decide that in addition to activating Devil with ,

which also plays the role of C-, you also want to activate Devil with . which
must now play the role of M-. To achieve such a result, you could use this
initialization code as a starting point and then customise it further based
on your requirements:

(require 'devil)

(global-devil-mode)

(define-key devil-mode-map (kbd ".") #'devil)

11

(add-to-list 'devil-special-keys `(". ." . ,(devil-key-executor ".")))

(setq devil-translations '((", z" . "C-")

(". z" . "M-")

(", ," . ",")

(". ." . ".")

("," . "C-")

("." . "M-")))

With this configuration, we can type , x , f for C-x C-f like before. But
now we can also type . x for M-x. Similarly, we can type , . s for C-M-s
and so on. Also , , inserts a literal comma and . . inserts a literal dot.
Further we can type , z , to get C-, and . z . to get M-..

Note that by default Devil configures only one activation key (,) because
the more activation keys we add, the more intrusive Devil becomes during
regular editing tasks. Every key that we reserve for activating Devil loses
its default function and then we need workarounds to somehow invoke the
default function associated with that key (like repeating . twice to insert
a single . in the above example). Therefore, it is a good idea to keep the
number of Devil keys as small as possible.

11.7 Make All Keys Repeatable

By default Devil has a small list of key sequences that are considered repeat-
able. This list is defined in the variable devil-repeatable-keys. Type
C-h v devil-repeatable-keys RET to view this list. For example, con-
sider the repeatable key sequence group ("%k p" "%k n" "%k f" "%k b")

in this list. Assuming that the default Devil and Emacs key bindings have
not been changed, this means that after we type , p and move the cursor to
the previous line, we can repeat this operation by typing p over and again.
We can also immediately type f to move the cursor right by one charac-
ter. The repetition occurs as long as the last character of any repeatable
key sequence in the group is typed again. Typing any other key stops the
repetition and the default behaviour of the other key is then observed.

It is possible to make all key sequences repeatable by setting the variable
devil-all-keys-repeatable to t. Here is an example configuration:

(require 'devil)

(setq devil-all-keys-repeatable t)

(global-devil-mode)

With this configuration, the repeatable key sequence groups still function
as described above. However, in addition to that now all other Devil key
sequences that end up executing Emacs commands also become repeatable,
i.e., any Devil key sequence that does not belong to devil-all-keys-repeatable

12

but invokes an Emacs command is now repeatable and it can be repeated
by merely repeating the last character of the key sequence.

Note that only Devil key sequences that get translated to a regular Emacs
key sequence and result in the execution of an Emacs command can be
repeatable. The special keys defined in devil-special-keys are never re-
peatable.

11.8 Interaction with Repeat Mode

Repeatable keys in Devil function somewhat like repeat-mode introduced in
Emacs 28.1. Here is an example configuration that disables repeatable keys
in Devil and shows how to use repeat-mode instead to define repeatable
commands.

(require 'devil)

(global-devil-mode)

(setq devil-repeatable-keys nil)

(defvar movement-repeat-map

(let ((map (make-sparse-keymap)))

(define-key map (kbd "p") #'previous-line)

(define-key map (kbd "n") #'next-line)

(define-key map (kbd "b") #'backward-char)

(define-key map (kbd "f") #'forward-char)

map))

(dolist (cmd '(previous-line next-line backward-char forward-char))

(put cmd 'repeat-map 'movement-repeat-map))

(repeat-mode)

Now if we type C-p to move the cursor up by one line, we can repeat it by
merely typing p again and we can also type or repeat n, b, or f, to move the
cursor down, left, or right respectively.

Repeat mode works fine with Devil too, so with the above configuration,
when we type , p to move the cursor to the previous line, we can type or
repeat p, n, b, or f to move the cursor up, down, left, or right again.

We do not really need to disable Devil’s repeatable keys while using repeat
mode. Both can be enabled together. However, the results can be surpris-
ing due to certain differences between the two. For example, consider the
following configuration:

(require 'devil)

(global-devil-mode)

13

(defvar movement-repeat-map

(let ((map (make-sparse-keymap)))

(define-key map (kbd "p") #'previous-line)

(define-key map (kbd "n") #'next-line)

map))

(dolist (cmd '(previous-line next-line))

(put cmd 'repeat-map 'movement-repeat-map))

(repeat-mode)

Now both Devil repeatable keys and repeat mode are active. If we now type
, p we can repeat p and n to move the cursor up and down. Repeat mode
makes this repetition possible. Additionally, after typing , p we can also
type or repeat b and f to move the cursor left and right. Devil makes this
repetition possible. We can tell the difference between repeat mode handling
repeatable commands and Devil mode handling repeatable keys by looking
at the echo area. When we repeat p which is handled by repeat mode, we
see a message ”Repeat with p, n” in the echo area. But when we repeat b
which is handled by Devil, we see no such message; Devil sets up repeatable
keys silently.

11.9 Comparison with Repeat Mode

The previous section demonstrates how much of what Devil accomplishes
with its support for repeatable key sequences can also be accomplished with
repeat-mode that comes out of the box in Emacs 28.1 and later versions.

However, there is a crucial difference between Devil’s repeatable keys and
repeat-mode. Repeat mode provides repeatable commands but Devil sup-
ports repeatable keys. This different is crucial and arguably makes repeat-
able key sequences easier to configure in Devil. To demonstrate the differ-
ence, let us consider the key sequence M-e. The command forward-sentence
is bound to it by default in the global map. However, in Org mode, the com-
mand org-forward-sentence is bound to it. The corresponding Devil key
sequence is , m e and this is a repeatable key sequence in Devil. Therefore,
we can type , m e followed by e e e and so on to move the cursor forward
by multiple sentences in text mode as well as in Org mode.

To emulate the same behaviour using repeat mode, we need a configuration
like this:

(require 'devil)

(global-devil-mode)

(setq devil-repeatable-keys nil)

14

(defvar forward-sentence-repeat-map

(let ((map (make-sparse-keymap)))

(define-key map (kbd "e") #'forward-sentence)

map))

(defvar org-forward-sentence-repeat-map

(let ((map (make-sparse-keymap)))

(define-key map (kbd "e") #'org-forward-sentence)

map))

(put #'forward-sentence 'repeat-map 'forward-sentence-repeat-map)

(put #'org-forward-sentence 'repeat-map 'org-forward-sentence-repeat-map)

(repeat-mode)

Note how we need to configure repeat mode for both commands that are
bound to M-e. With the above configuration, we can now type , m e fol-
lowed by e e e to move forward by multiple sentences in both text mode
as well as Org mode. However, we can never be sure if we missed configur-
ing repeat mode for some other command that might be bound to M-e in
some mode. For example, in C mode, the command c-end-of-statement

is bound to M-e. The above configuration is no good for repeating this
command by typing e e e.

Devil, however, can repeat the command bound to M-e in any mode. Devil
does not merely make the command bound to it in a particular mode re-
peatable. Instead Devil makes the key sequence , m e itself repeatable.
Therefore, with Devil’s own support for repeatable key sequences, we can
type , m e and then e e e to repeat the command bound to M-e regardless
of which mode is active or which command is bound to this key sequence.

12 Why?

Why go to the trouble of creating and using something like this? Why not
just remap caps lock to ctrl like every other sane person does? Or if it is
so important to avoid modifier keys, why not use something like God mode
or Evil mode?

Well, for one, both God mode and Evil mode are modal editing modes.
Devil, on the other hand, retains the non-modal editing experience of Emacs.

Devil mode began as a fun little experiment. From the outset, it was clear
that using something as crucial as the comma for specifying the modifier
key is asking for trouble. However, I still wanted to see how far I could go

15

with it. It turned out that in a matter of days, I was using it full-time for
all of my Emacs usage.

This experiment was partly motivated by Macbook keyboards which do not
have a ctrl key on the right side of the keyboard. Being a touch-typist
myself, I found it inconvenient to type key combinations like C-x, C-s, C-r,
C-d, C-f, C-w, C-a, C-e, etc. where both the modifier key and the modified
key need to be pressed with the left hand fingers. I am not particularly
fond of remapping caps lock to behave like ctrl because that still suffers
from the problem that key combinations like C-x, C-a require pressing both
the modifier key and the modified key with the left hand fingers. I know
many people remap both their caps lock and enter to behave like ctrl.
While I think that is a fine solution, I was not willing to put up with the
work required to make that work seamlessly across all the various operating
systems I work on.

What began as a tiny whimsical experiment a few years ago turned out to be
quite effective, at least to me. I like that this solution is implemented purely
as Elisp and therefore does not have any external dependency. I am sharing
this solution in the form of a minor mode, just in case, there is someone out
there who might find this useful too.

13 Comparison with God Mode

God mode provides a modal editing experience but Devil does not. Devil
has the same underlying philosophy as that of God mode, i.e., the user
should not have to learn new key bindings. However, Devil does not have
a hard separation between insert mode and command mode like God mode
has. Instead, Devil waits for an activation key (, by default) and as soon
as it is activated, it intercepts and translates keys, runs the corresponding
command, and then gets out of the way. So Devil tries to retain the non-
modal editing experience of vanilla Emacs.

Now it is worth mentioning that some of this non-modal editing experience
can be reproduced in god-mode too using its god-execute-with-current-bindings
function. Here is an example:

(global-set-key (kbd ",") #'god-execute-with-current-bindings)

With this configuration, God mode translates , x f to C-x C-f. Similarly
, g x invokes M-x and , G s invokes C-M-x. This provides a non-modal
editing experience in God mode too. However, this experience does not
extend seamlessly to minibuffers. Devil does extend its Devil key translation
to minibuffers.

Further note that in God mode the ctrl modifier has sticky behaviour,

16

i.e., the modifier remains active automatically for the entire key sequence.
Therefore in the above example, we type , only once while typing , x f to
invoke C-x C-f. However, this sticky behaviour implies that we need some
way to disambiguate between key sequences like C-x C-f (find-file) and
C-x f (set-fill-column). God mode solves this by introducing SPC to
deactivate the modifier, e.g., , x f translates to C-x C-f but , x SPC f

translates to C-x f. Devil does not treat the modifier key as sticky which
leads to simpler key sequences at the cost of a little additional typing, i.e.,
, x , f translates to C-x C-f and , x f translates to C-x f.

To summarize, there are primarily four things that Devil does differently:

� Provide a non-modal editing experience from the outset.

� Seamlessly extend the same editing experience to minibuffer, incre-
mental search, etc.

� Translate key sequences using string replacements. This allows for
arbitrary and sophisticated key translations for the adventurous.

� Choose non-sticky behaviour for the modifier keys.

These differences could make Devil easier to use than God mode for some
people but clumsy for other people. It depends on one’s tastes and prefer-
ences.

14 Frequently Asked Questions

1. Why was the comma (,) chosen as the default Devil key? Isn’t the
semicolon (;) a better choice since it belongs to the home row?

Opinions vary. As the author and maintainer of this minor mode, I
made a choice to use the comma as the default Devil key. Although,
the semicolon belongs to the home row on most keyboards and the
comma does not, I find the vertical movement to reach the comma key
with the long finger more convenient than the horizontal movement
necessary to reach the semicolon with the little finger.

As a touch typist, my fingers rest on the eight home row keys when
idle. The horizontal movement necessary to type the semicolon leads
to a significant angular movement of the wrist. Curling my long finger
to reach the comma key helps me avoid this wrist strain. If you do not
like this default, it is quite easy to customise the Devil key to be the
semicolon or any other key of your choice. See the section 11.4 and
the subsequent sections to learn how to do this.

2. I am happy with typing , , every time, I need to type a comma. Can
I free up , SPC to invoke set-mark-command?

17

Yes, this can be done by removing the special key , SPC from devil-special-keys.
See the section 11.3 to find out how to do this.

3. Can I make the Devil key sticky, i.e., can I type , x f instead of , x

, f to invoke C-x C-f?

Devil does not support sticky keys. Say, Devil were to translate , x

f to C-x C-f, how would we invoke C-x f then? We need some way
to disambiguate between C-x C-f and C-x f. Different tools take
different approaches to disambiguate the two key sequences. God-
mode translates x f to C-x C-f and x SPC f to C-x f, i.e., God-mode
treats the C- modifier as sticky by default but when we want to make
it non-sticky, we need to type SPC in god-mode. This makes some key
sequences like C-x C-f shorter to type but some other key sequences
like C-x f longer to type.

Devil treats the Devil key as non-sticky, so that there is no need for
additional peculiar rules to switch between sticky and non-sticky be-
haviour to disambiguate key sequences like C-x C-f and C-x f. With
Devil , x , f translates to C-x C-f and similarly , x f translates to
C-x f. The translation rules are simpler at the cost of a little addi-
tional typing in some cases. In most such cases, Devil requires typing
an additional comma that one could have avoided if the comma were
sticky. However, in other cases, Devil eliminates the need to type an
extra key to make the modifier key non-sticky.

4. Are there some things that are easier to do with Devil than god-mode?

Devil is not necessarily easier than god-mode. It is different. Pref-
erences vary, so some may find Devil easier to use while some others
may find god-mode easier to use. See the section 13 for more details
on the differences between the two modes.

15 Conclusion

Devil is a minor mode to translate key sequences. Devil utilises this trans-
lation capability to provide a modifier-free editing experience and it does
so without resorting to modal-editing. Devil retains the non-modal editing
of vanilla Emacs. This mode was written as a quirky experiment to make
it easier to use Emacs without modifier keys. However, the resulting mode
turned out to be quite convenient to use, in general. You might find Devil
comfortable. Or you might find Devil to be a terrible idea. It is also pos-
sible that you might find Devil useful but intrusive. In such cases, there
are plenty of customisable options that you can modify to configure Devil
according to your preferences. If you need any help or if you find any issues,
please create an issue at https://github.com/susam/devil/issues.

18

https://github.com/susam/devil/issues

	Introduction
	Notation
	Install
	Install Interactively from MELPA
	Install Automatically from MELPA
	Install from Git Source

	Use Devil
	Typing Commas
	Devil Reader
	Translation Mechanism
	Default Translation Rules
	Describe Devil Key
	Bonus Key Bindings
	Custom Configuration Examples
	Local Mode
	Custom Appearance
	Reclaim , SPC to Set Mark
	Custom Devil Key
	Yet Another Custom Devil Key
	Multiple Devil Keys
	Make All Keys Repeatable
	Interaction with Repeat Mode
	Comparison with Repeat Mode

	Why?
	Comparison with God Mode
	Frequently Asked Questions
	Conclusion

